

STATUS 5

A Reliability Assessment Tool For NDT Inspection Systems

Introduction – Advantages

Introduction

- STATUS 5 is a convenient NDT tool for assessing the efficiency and reliability of NDT techniques and evaluating operator performance.
- The software generates Probability of Detection (POD) curves for all NDE systems, based on statistical analysis of data imported by the user.
- STATUS 5's Sizing Accuracy study assists the user's NDT technique by comparing actual flaw sizes, reported after destructive testing, to the user's flaw sizing capability.
- The Sizing Optimization tool provides guidance to optimize calibration curves implemented from the acquisition system and increase the sizing accuracy based on your specifications.

Major Advantages

- User-friendly interface with a highly visualized presentation.
- Facilitates quick importing/exporting of Excel documents or manual data entry.
- Fast and intuitive to use with extensive help and guidance, tailored for operators with a minimal mathematical background and statistical knowledge.
- Five statistical models available for POD curve generation, including an automated model recommendation based on the most efficient POD curve using the operators imported data.
- Noise Study and Threshold Optimization tools efficiently adjust POD model inputs based on inspection system properties.

STATUS 5 Study List

Probability of Detection – Sizing Accuracy Sizing Optimization – Noise Study

Main Screen

- Data View, Chart View and Split View available.
- Inspection Data and Actual Test Data columns show defect's length, depth and height.
- •Data filtering capability.
- •Defect's ID, side, zone and type information shown in columns.
- •Recommendation tab and study list.

Probability of Detection (POD)

â vs. a, Logit, Probit, LogLog, CLogLog Models

â vs. a POD

- •Defects sizes and amplitudes used with regard to threshold and saturation amplitudes.
- •Separate POD curves can be generated based on defects length, height and depth.
- POD and confidence curves available on both Cartesian and log-scale plots.
- Critical defect sizes are specified on the graphs by vertical lines and listed in a summary table.

Hit/Miss PODs

- •POD curves are generated based on Hit (1, green points) and Miss (0, blue points) data.
- •Separate POD curves can be generated based on the defect's length, height and depth.
- POD and confidence curves available on both Cartesian and log-scale plots.
- Critical defect sizes are graphed by vertical lines and listed in a summary table.

POD Model Recommendation

- •Instant analysis and comparison of all 5 models utilized in 12 settings.
- •Automatically recommends the most efficient POD model based on AIC values.
- Data fit quality to all POD models is evaluated using BIC values.
- The user is directed to the recommended model with optimized parameters at the click of a button.

â vs. a		AIC	BIC	BIC FIT
â	a	696.89	704.85	Very Strong
â	In(a)	696.44	704.40	Very Strong
In(â)	a	240.21	248.17	Very Strong
In(â)	In(a)	239.54	247.51	Very Strong
Logit a In(a)		AIC 106.82 105.11	BIC 112.13 110.42	BIC FIT Very Strong Very Strong
Probit a In(a)		AIC 106.96 105.27	BIC 112.27 110.58	BIC FIT Very Strong Very Strong
LogLog a In(a)		AIC 106.67 104.89	BIC 111.98 110.20	BIC FIT Very Strong Very Strong
CLogLog a In(a)		AIC 107.15 105.57	BIC 112.46 110.87	BIC FIT Very Strong Very Strong

Probability of Detection (POD)

Nordtest

Imported Data Binning Algorithm Available for All POD Models

Nordtest â vs. a POD

- •Imported data can be grouped in the selected number of bins for POD curve generation.
- •5 to 15 bins can be selected by the user.
- POD and confidence curves available on both Cartesian and log-scale plots.
- Critical defect sizes are specified on the graphs by vertical lines and listed in a summary table.

Nordtest Hit/Miss POD

- •Imported data can be grouped in the selected number of bins for POD curve generation.
- •5 to 15 bins can be selected by the user.
- POD and confidence curves available on both Cartesian and log-scale plots.
- Critical defect sizes are specified on the graphs by vertical lines and listed in a summary table.

Noise Study – Threshold Optimization Tool

Noise Study

- •An instrument's noise data can be imported to the software.
- •Noise statistical distribution is obtained as compared to normal, weibull and log normal distributions.
- Probability of False Call is calculated for different values of threshold based on the noise statistical distribution.
- Critical defect sizes are specified on the graphs by vertical lines.

Threshold Optimization

- •Effect of threshold value on the shape of the POD curves can be analyzed graphically.
- •Various colours can be used to plot POD curves generated by different thresholds, providing a clear comparison on the same graph.
- Effect of threshold values on the values of critical flaw sizes are analyzed in separate graphs.

Sizing Accuracy – Sizing Optimization

Sizing Accuracy

- •Measured defect sizes are compared to actual sizes for sizing accuracy assessment.
- Sizing regression fit compares estimated defects sizes with the ideal actual defect size.
- •Sizing scatter plots are provided to compare actual defect's sizes to the measured flaw size scatter.
- Sizing regression and scatter plot results are summarized in tables with key information.

Sizing Optimization

- •Recommends the optimum calibration curve fit formula comparing linear, polynomial and power fits.
- •Calculates the optimum calibration curve to be used in the instrument for sizing.
- •Optimum calibration curve usage results in defect's size measurements match more closely to actual sizes.
- •Optimum calibration curve formula and instrument data import table is provided.

